organic compounds

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

N-(2-Methoxyethyl)phthalimide

Yoke Leng Sim, Azhar Ariffin and Seik Weng Ng*

Department of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia Correspondence e-mail: seikweng@um.edu.my

Received 30 April 2008; accepted 7 May 2008

Key indicators: single-crystal X-ray study; T = 100 K; mean σ (C–C) = 0.002 Å; R factor = 0.060; wR factor = 0.206; data-to-parameter ratio = 15.1.

The title molecule, $C_{11}H_{11}NO_3$, lies on a crystallographic mirror plane which bisects the plane of the phthalimide unit and contains the C and O atoms of the 2-methoxyethyl group.

Related literature

For medicinal properties of the title compound, see: Chapman et al. (1989); Hall et al. (1994). For a kinetic study of the reaction that yields the title compound, see: Khan (1994).

O

Experimental

Crystal data C11H11NO3

 $M_r = 205.21$

Orthornomolic, Pnma	Z = 4
a = 7.0514 (2) Å	Mo $K\alpha$ radiation
b = 9.3852 (2) Å	$\mu = 0.10 \text{ mm}^{-1}$
c = 14.6024 (4) Å	T = 100 (2) K
V = 966.37 (4) Å ³	$0.30 \times 0.20 \times 0.10 \text{ mm}$
Data collection	
Bruker SMART APEX	1164 independent reflections
diffractometer	986 reflections with $I > 2\sigma(I)$
Absorption correction: none	$R_{\rm int} = 0.039$
7349 measured reflections	

 $R[F^2 > 2\sigma(F^2)] = 0.059$ 77 parameters $wR(F^2) = 0.206$ S = 1.111164 reflections

H-atom parameters constrained $\Delta \rho_{\rm max} = 0.50 \ {\rm e} \ {\rm \AA}^ \Delta \rho_{\rm min} = -0.50 \text{ e } \text{\AA}^{-3}$

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: X-SEED (Barbour, 2001); software used to prepare material for publication: publCIF (Westrip, 2008).

We thank the SAGA grant (06-02-03-0147) for supporting this study, and the University of Malaya for the purchase of the diffractometer.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: LH2624).

References

Barbour, L. J. (2001). J. Supramol. Chem. 1, 189-191.

Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA

Chapman, J. M., Sowell, J. W., Abdalla, G., Hall, I. H. & Wong, O. T. (1989). J. Pharm. Sci. 78, 903-909.

Hall, I. H., Chapman, J. M. & Wong, O. T. (1994). Anti-Cancer Drugs, 5, 75-82. Khan, M. N. (1994). Indian J. Chem. B33, 646-650. Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

Westrip, S. P. (2008). publCIF. In preparation.

supplementary materials

Acta Cryst. (2008). E64, o1058 [doi:10.1107/S1600536808013548]

N-(2-Methoxyethyl)phthalimide

Y. L. Sim, A. Ariffin and S. W. Ng

Comment

The title compound was previously reported in a kinetic study (Khan, 1994). We intend to carry out studies on the medicinal properties of the compound; some such properties have been reported (Chapman *et al.*, 1989; Hall *et al.*, 1994). The molecule of *N*-(2-methoxyethyl)phthalimide lies on a mirror plane that relates one half of the phthalamido portion of the molecule to the other; the 2-methoxyethyl substituent lies on the mirror plane itself (Fig. 1).

Experimental

Phthalic anhydride (2.59 g, 17.5 mmol) and 2-methoxyethylamine (1.50 ml, 17.5 mmol) were dissolved in acetic acid (25 ml). The mixture was heated at 393–413 K for 4 h; the reaction was monitored by TLC. Water was added to precipitate the product, which was collected (80% yield.) Crystals were obtained upon recrystallization from water.

Refinement

Carbon-bound H-atoms were placed in calculated positions (C—H 0.95 to 0.99 Å) and were included in the refinement in the riding model approximation, with U(H) set to 1.2–1.5 U(C).

Figures

Fig. 1. Thermal ellipsoid plot (Barbour, 2001) of $C_{11}H_{11}NO_3$ at the 70% probability level. Hydrogen atoms are drawn as spheres of arbitrary radiius. Symmetry transformation (i): *x*, 1/2 – *y*, *z*.

N-(2-Methoxyethyl)phthalimide

Crystal data	
C ₁₁ H ₁₁ NO ₃	$F_{000} = 432$
$M_r = 205.21$	$D_{\rm x} = 1.410 {\rm Mg m}^{-3}$
Orthorhombic, Pnma	Mo <i>K</i> α radiation $\lambda = 0.71073$ Å
Hall symbol: -P 2ac 2n	Cell parameters from 2463 reflections
a = 7.0514 (2) Å	$\theta = 2.6 - 28.3^{\circ}$
b = 9.3852 (2) Å	$\mu = 0.10 \text{ mm}^{-1}$
c = 14.6024 (4) Å	T = 100 (2) K
$V = 966.37 (4) \text{ Å}^3$	Prism, colorless
<i>Z</i> = 4	$0.30\times0.20\times0.10~mm$

Data collection

Bruker SMART APEX diffractometer	986 reflections with $I > 2\sigma(I)$
Radiation source: fine-focus sealed tube	$R_{\rm int} = 0.039$
Monochromator: graphite	$\theta_{\text{max}} = 27.5^{\circ}$
T = 100(2) K	$\theta_{\min} = 2.6^{\circ}$
ω scans	$h = -8 \rightarrow 9$
Absorption correction: None	$k = -12 \rightarrow 12$
7349 measured reflections	$l = -12 \rightarrow 18$
1164 independent reflections	

Refinement

Refinement on F^2	Secondary atom site location: difference Fourier map
Least-squares matrix: full	Hydrogen site location: inferred from neighbouring sites
$R[F^2 > 2\sigma(F^2)] = 0.059$	H-atom parameters constrained
$wR(F^2) = 0.206$	$w = 1/[\sigma^2(F_o^2) + (0.1433P)^2 + 0.309P]$ where $P = (F_o^2 + 2F_c^2)/3$
S = 1.11	$(\Delta/\sigma)_{\rm max} = 0.001$
1164 reflections	$\Delta \rho_{max} = 0.50 \text{ e} \text{ Å}^{-3}$
77 parameters	$\Delta \rho_{min} = -0.50 \text{ e } \text{\AA}^{-3}$
Primary atom site location: structure-invariant direct	

Primary atom site location: structure-invariant direc methods

Fractional a	atomic	coordinates	and isotro	onic or e	eauivalent	isotropic	disi	placement	narameters ($(Å^2$)
				$p \sim 0.0$	90000000000000	1001. opre		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	p		/

	x	У	Ζ	$U_{\rm iso}*/U_{\rm eq}$	Occ. (<1)
01	0.2012 (2)	0.00647 (14)	0.60172 (9)	0.0229 (5)	
O2	0.3277 (3)	0.2500	0.33669 (12)	0.0161 (5)	
N1	0.2007 (4)	0.2500	0.57847 (14)	0.0167 (6)	
C1	0.2372 (3)	0.17575 (18)	0.89087 (12)	0.0176 (5)	
H1	0.2434	0.1260	0.9475	0.021*	
C2	0.2281 (3)	0.09866 (19)	0.80904 (12)	0.0168 (5)	
H2	0.2280	-0.0026	0.8088	0.020*	
C3	0.2194 (3)	0.17598 (18)	0.72848 (11)	0.0144 (5)	
C4	0.2072 (3)	0.12658 (18)	0.63197 (13)	0.0171 (5)	
C5	0.1763 (4)	0.2500	0.47961 (16)	0.0176 (6)	
H5A	0.1034	0.3354	0.4610	0.021*	0.50
H5B	0.1034	0.1646	0.4610	0.021*	0.50
C6	0.3665 (4)	0.2500	0.43155 (16)	0.0175 (6)	
H6A	0.4404	0.3357	0.4486	0.021*	0.50
H6B	0.4404	0.1643	0.4486	0.021*	0.50
C7	0.4974 (4)	0.2500	0.28287 (17)	0.0210 (7)	
H7A	0.4642	0.2500	0.2177	0.031*	
H7B	0.5721	0.1647	0.2970	0.031*	0.50

supplementary materials

H7C	0.5721	0.3353	0.2970		031*	0.50	
Atomic displacement parameters $(Å^2)$							
	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}	
01	0.0377 (10)	0.0142 (8)	0.0166 (8)	0.0009 (6)	-0.0011 (6)	-0.0037 (5)	
02	0.0210 (11)	0.0178 (9)	0.0093 (9)	0.000	0.0003 (7)	0.000	
N1	0.0282 (14)	0.0143 (11)	0.0075 (10)	0.000	0.0000 (8)	0.000	
C1	0.0240 (10)	0.0185 (10)	0.0102 (9)	0.0008 (7)	0.0016 (6)	0.0018 (6)	
C2	0.0237 (11)	0.0134 (8)	0.0133 (9)	-0.0006 (7)	0.0001 (7)	0.0017 (6)	
C3	0.0189 (10)	0.0142 (9)	0.0101 (9)	0.0001 (7)	0.0003 (6)	-0.0012 (6)	
C4	0.0258 (11)	0.0133 (9)	0.0121 (9)	0.0011 (7)	0.0006 (7)	0.0004 (6)	
C5	0.0220 (14)	0.0216 (12)	0.0091 (12)	0.000	-0.0024 (9)	0.000	
C6	0.0239 (15)	0.0197 (11)	0.0088 (12)	0.000	-0.0011 (9)	0.000	
C7	0.0284 (17)	0.0196 (12)	0.0149 (12)	0.000	0.0043 (11)	0.000	
Geometric para	neters (Å, °)						
O1—C4		1.211 (2)	C3—C3	i	1.3	389 (3)	
O2—C6		1.412 (3)	C3—C4	L	1.4	1.486 (2)	
O2—C7		1.432 (3)	C5—C6		1.5	1.514 (4)	
N1—C4		1.398 (2)	С5—Н5	БА	0.9900		
N1—C4 ⁱ		1.398 (2)	С5—Н5	БB	0.9900		
N1—C5		1.454 (3)	C6—H6	δA	0.9900		
C1—C1 ⁱ		1.394 (3)	C6—H6	δB	0.9900		
C1—C2		1.398 (2)	С7—Н7	ΥA	0.9	9800	
C1—H1		0.9500	С7—Н7	'B	0.9	9800	
C2—C3		1.384 (2)	С7—Н7	'C	0.9	9800	
C2—H2		0.9500					
C6—O2—C7		112.1 (2)	N1—C5	5—H5A	10	9.5	
C4—N1—C4 ⁱ		111.9 (2)	C6—C5	—H5A	109.5		
C4—N1—C5		123.97 (11)	N1—C5	5—H5B	109.5		
C4 ⁱ —N1—C5		123.97 (11)	C6—C5	—Н5В	10	9.5	
C1 ⁱ —C1—C2		121.16 (10)	H5A—0	С5—Н5В	10	8.1	
C1 ⁱ —C1—H1		119.4	O2—C6	6—C5	10	6.5 (2)	
C2—C1—H1		119.4	O2—C6	6—Н6А	11	0.4	
C3—C2—C1		117.21 (17)	C5—C6	—Н6А	11	0.4	
С3—С2—Н2		121.4	O2—C6	—Н6В	11	0.4	
C1—C2—H2		121.4	C5—C6	—Н6В	11	0.4	
$C2-C3-C3^{1}$		121.63 (11)	H6A—0	С6—Н6В	10	8.6	
C2—C3—C4		130.19 (16)	O2—C7	/—Н7А	10	9.5	
C3 ¹ —C3—C4		108.18 (9)	O2—C7	′—Н7В	10	9.5	
01—C4—N1		124.48 (17)	H7A—0	С7—Н7В	10	9.5	
O1—C4—C3		129.64 (16)	O2—C7	— Н7С	10	9.5	
N1—C4—C3		105.87 (15)	H7A—0	С7—Н7С	10	9.5	
N1—C5—C6		110.8 (2)	H7B—0	С7—Н7С	10	9.5	

supplementary materials

C1 ⁱ —C1—C2—C3	0.1 (2)	C3 ⁱ —C3—C4—O1	-179.02 (19)
C1—C2—C3—C3 ⁱ	-0.1 (2)	C2-C3-C4-N1	179.5 (2)
C1—C2—C3—C4	-179.47 (19)	C3 ⁱ —C3—C4—N1	0.07 (17)
C4 ⁱ —N1—C4—O1	179.03 (13)	C4—N1—C5—C6	-92.3 (2)
C5—N1—C4—O1	3.2 (4)	C4 ⁱ —N1—C5—C6	92.3 (2)
C4 ⁱ —N1—C4—C3	-0.1 (3)	C7—O2—C6—C5	180.0
C5—N1—C4—C3	-176.0 (2)	N1C5C6O2	180.0
C2—C3—C4—O1	0.5 (4)		

Symmetry codes: (i) x, -y+1/2, z.

Fig. 1